The Problem With IMQs | Verikai

The Problem With IMQs

Most underwriters admit that medical questionnaires (IMQs) are neither fast nor accurate in predicting future insurance claims. 

What’s wrong with IMQs? For starters, no one particularly likes them. Employees don’t want to send their personal health information to their employers. Employers don’t want to chase after paperwork. Brokers don’t want to nag their customers to get them done. And underwriters realize that IMQ’s ability to predict risk is limited, at best.

While the intent of IMQs is to better understand employees’ medical histories and, ultimately, what they may or may not claim against in the future, their accuracy is flawed. Why? 

·     They have low fill rates. Intentional or not, IMQs are often misplaced and never completed or submitted. 

·     People aren’t forthcoming. Some will lie or skew responses knowing their employers will see them. Some may not know how to answer a question and will instead guess. And others will breeze through it quickly to “check it off their list” regardless of the impact on the result. The opportunities for error are endless.

·     They look backward, not forward. IMQ responses are only as good as the information the employee knows. For example, a patient may have an undiagnosed condition that will cause them to claim in the future – yet it won’t show up on an IMQ.

None of this is news in the health insurance market. 

What is news is that there is an alternative solution. One that does not sacrifice speed or accuracy.

The Alternative Data Solution 

Underwriters no longer need to limit themselves to tools that only solve for half of their needs. With advancements in technology and data, we can now use predictive analytics to modernize the underwriting process, achieving better risk selection, increased volume, and more competitive rates. 

For example, Verikai’s Capture for Health™ predictive database uses behavioral data and advanced machine learning to provide underwriters with instant reports and insights to help make informed decisions. Given that 80% of medical claims are attributable to an individual’s behavior and lifestyle choices, we must consider behavior as a predictor in future claims.

Reports based on behavior are profoundly more valuable and cost-effective. Why? 

·     The data is true. Similar to an IMQ, Verikai’s data is consumer provided. However, unlike an IMQ, it is gathered in numerous settings in which there is no incentive to lie, manipulate, or rush. In fact, it’s nearly impossible to do so.

·     The data is predictive. Behavior is second only to genetics in predicting future medical outcomes, even when the patient may not yet know of an underlying condition.

·     They are instant. Get reports quickly and easily, requiring little to no involvement from the employer group or their employees. 

·     They are proactive. Determine bad risk at the time of application to protect the carrier’s business. And determine good risk to drive growth and profitability.

·     They drive process. Create workflows at the top of the funnel based on objective data.

The goal of software is to help users complete a task with more efficiency and provide better outcomes than with previous processes. Modern underwriting tools are no different. While there may never be a one-size-fits-all approach to predictive sciences, the tools available to underwriters are growing in sophistication and allow for businesses to utilize all the tools available to them to generate the best, most holistic results. 

Want to learn more about behavioral data and machine learning? Let’s talk. You can reach me directly at



Leave a Reply

Your email address will not be published. Required fields are marked *